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Introduction to regression

A problem arising in engineering, economics, medicine, and other areas is
that of investigating the relationship between two or more variables. In
such settings, the goal is to model a random variable Y (often continuous)
as a function of one or more independent variables, say, x1, x2, . . . , xk .
Mathematically, we can express this model as

Y = g(x1, x2, . . . , xk) + ε

where g : Rk → R is a function (whose form may or may not be
specified). This is called a regression model. In this course, we will
consider models of the form

Y = β0 + β1x1 + β2x2 + . . .+ βkxk︸ ︷︷ ︸
g(x1,x2,...,xk )

+ε

That is, g is a linear function of β0, β1, . . . , βk . We call this a linear
regression model.
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Introduction to regression

Terminology:

The response variable Y is random (but we do get to observe its
value).

The independent variable x1, x2, . . . , xk are fixed (and observed).

The response parameters β0, β1, β2, . . . , βk are unknown. They are
to be estimated based on the observed data.

The error term ε is random (not observed). The presence of the
random error ε conveys the fact that the relationship between the
dependent variable Y and the independent variables x1, x2, . . . , xk
through g is not deterministic. Instead, the term ε “absorbs” all
variation in Y that is not explained by g(x1, x2, . . . , xk).

Remark: The term “linear” does not refer to the shape of the regression
function g. It refers to how the regression parameters β0, β1, . . . , βk enter
the g function.
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Simple linear regression model

A simple linear regression model includes only one independent variable
x and is of the form

Y = β0 + β1x + ε

The population regression function g(x) = β0 + β1x is a straight line with
intercept β0 and slope β1. These parameters describe the population of
individuals for which this model is assumed. Note if E (ε) = 0, then

E (Y ) = E (β0 + β1x + ε) = β0 + β1x + E (ε) = β0 + β1x

Therefore, the interpretations for β0 and β1 are as follows.

β0 quantifies the population mean of Y when x = 0.

β1 quantifies the population-level change in E (Y ) brought about by
one-unit change in x.
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Simple linear regression model

Example As part of a waste removal project, a new compression machine
for processing sewage sludge is being studied. Engineers are interested in
the following variables:

Y = moisture control of compressed pellets (measured as a percent)

x = machine filtration rate (kg-DS/m/hr)

Engineers collect observations of (x ,Y ) from a random sample of n = 20
sewage specimens; the data are given below.

Obs x Y Obs x Y

1 125.3 77.9 11 159.5 79.9
2 98.2 76.8 12 145.8 79.0
...

...
...

...
...

...
9 161.2 80.1 19 159.6 79.0

10 178.9 80.2 20 110.7 78.6
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Simple linear regression model
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Figure 1. Scatterplot of pellet moisture Y (measured as a percentage) as a
function of machine filtration rate x (measured in kg-DS/m/hr).
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Simple linear regression model

Figure 1 displays the sample data in a scatterplot. This sample
information suggests the variables Y and x are linearly related, although
there is a large amount of variation that is unexplained.

This unexplained variability could arise from other independent
variables (e.g., applied temperature, pressure, sludge mass, etc.) that
also influence the moisture percentage Y but are not present in the
model.

It could also arise from measurement error or just random variation in
the sludge compression process.

Inference: What does the sample information suggest about the
population? Do we have evidence that Y and x are linearly related in the
population?
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Least sqaures estimation

Fitting a regression model refers to estimating the population regression
parameters in the model with the observed sample information(data). In
the simple linear regression context, suppose we have a random sample of
observations (xi ,Yi ), i = 1, 2, . . . , n and postulate the simple linear
regression model

Yi = β0 + β1xi , i = 1, 2, . . . , n

Our goal is to estimate β0 and β1. The most common method of
estimating the population parameters β0 and β1 is the method of least
squares. The least squares method is to find the optimal values of β0
and β1 such that minimizes

Q(β0, β1) =
n∑

i=1

(Yi − (β0 + β1xi ))2
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Least sqaures estimation

Denote the least squares estimators by b0 and b1, respectively, that is, the
values of β0 and β1 that minimizes Q(β0, β1). A two-variable calculus
minimization argument can be used to find minimizers of Q(β0, β1).
Taking partial derivatives of Q(β0, β1), we obtain

∂Q(β0, β1)

∂β0
= −2

n∑
i=1

(Yi − β0 − β1xi )
set
= 0

∂Q(β0, β1)

∂β1
= −2

n∑
i=1

(Yi − β0 − β1xi )xi
set
= 0

Solving for β0 and β1 gives the least squares estimators

b0 = Ȳ − b1x̄

b1 =

∑n
i=1(xi − x̄)(yi − Ȳ )∑n

i=1(xi − x̄)2
=

SSxy
SSxx

The estimated model is written as Ŷ = b0 + b1x .
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Least sqaures estimation

We use R to calculate the equation of the least squares regression line for
the sewage data.
The least squares estimates for the sewage data are

b0 = 72.959, b1 = 0.041

Therefore, the estimated model is

Ŷ = 72.959 + 0.041x

or, in other words,

ˆmoisture = 72.959 + 0.041Filtrationrate
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Least sqaures estimation

Remarks: The estimated model is also called the prediction equation,
because we can now predict the value of Y (moisture percentage) for a
given value of x (filtration rate). For example, when the filtration rate is
x = 150 (kg-DS/m/hr), we would predict the moisture percentage to be

Ŷ (150) = 72.959 + 0.041(150) ≈ 79.11

Of course, the prediction comes directly from the sample of observations
used to fit the regression model. Therefore, we will eventually want to
quantify the uncertainty in this prediction, i.e., how variable is this
prediction?
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Model assumptions and sampling distribution

Interest: We investigate the properties of the least squares estimators b0
and b1 as estimators of the population-level regression parameters β0 and
β1 in the simple linear regression model

Yi = β0 + β1xi + εi , i = 1, 2, . . . , n

Assumption: εi
i .i .d∼ N (0, σ2). Results: Under the above assumption, we

can derive the following results for the simple linear model.

Result 1: Y ∼ N (β0 + β1x , σ
2) In other words, the response variable

Y is normally distributed with mean β0 + β1x and variance σ2.

Result 2: The least squares estimators b0 and b1 are unbiased
estimators of β0 and β1, respectively, that is

E (b0) = β0,E (b1) = β1
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Model assumptions and sampling distribution

Result 3: The least squares estimators b0 and b1 have normal
sampling distributions; specially,

b0 ∼ N (β0, c00σ
2) and b1 ∼ N (β1, c11σ

2)

where

c00 =
1

n
+

x̄2

SSxx
and c11 =

1

SSxx

These distributions are needed to construct confidence intervals and
perform hypothesis tests for β0 and β1.

Chong Ma (Statistics, USC) STAT 509 Spring 2017 April 17, 2017 17 / 33



Outline

1 Introduction to regression

2 Simple linear regression model

3 Least squares estimation

4 Model assumptions and sampling distribution

5 Estimating the error variance

6 Statistical inference for β0 and β1

7 Confidence and Prediction Intervals

Chong Ma (Statistics, USC) STAT 509 Spring 2017 April 17, 2017 18 / 33



Estimating the error variance

In the simple linear regression model

Y = β0 + β1x + ε

where ε ∼ N (0, σ2), we now turn our attention to estimating σ2, the
error variance. Recall: As we did in estimating β0 and β1 (the
population level regression parameters), we will use the observed data
(xi ,Yi ), i = 1, 2, . . . , n to estimate the error variance σ2. The error
variance is also a population level parameter and quantifies how variable
the population is for a given model.
Terminology: Define the ith fitted value by

Ŷi = b0 + b1xi

where b0 and b1 are the least squares estimators.
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Estimating the error variance

Each observation has its own fitted value. Defie the ith residual by

ei = Yi − Ŷi

In the simple linear regression model, we have the following fact

n∑
i=1

ei =
n∑

i=1

(Yi − Ŷi ) = 0

Note b0 = Ȳ − b1x̄ , then

n∑
i=1

ei =
n∑

i=1

(Yi − Ŷi ) =
n∑

i=1

(Yi − (b0 + b1xi ))

=
n∑

i=1

Yi − n(b0 + b1x̄) = nȲ − nȲ (Ȳ = b0 + b1x̄)

= 0
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Estimating the error variance

Define the residual sum of squares by

SSres =
n∑

i=1

e2i =
n∑

i=1

(Yi − Ŷi )
2

In the simple linear regression model, the residual mean squares

MSres =
SSres
n − 2

is an unbiased estimator of σ2, that is,

E (MSres) = σ2

The quantity

σ̂ =
√
MSres =

√
SSres
n − 2

estimates σ and is called the residual standard error.
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Estimating the error variance

> summary(fit)

Call:

lm(formula = moisture ~ filtration.rate)

Residuals:

Min 1Q Median 3Q Max

-1.39552 -0.27694 0.03548 0.42913 1.09901

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 72.958547 0.697528 104.596 < 2e-16 ***

filtration.rate 0.041034 0.004837 8.484 1.05e-07 ***

---

Residual standard error: 0.6653 on 18 degrees of freedom

Multiple R-squared: 0.7999,Adjusted R-squared: 0.7888

F-statistic: 71.97 on 1 and 18 DF, p-value: 1.052e-07
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Statistical inference for β0 and β1

In the simple linear regression

Y = β0 + β1x + ε

we are dealing with the question, “What does the sample information
from an estimated regression model suggest about the population?”
Put another way, we pursue statistical inference for the population level
regression parameters β0 and β1. In practice,

Inference for the slope parameter β1 is of primary interest because of
its connection to the independent variable x in the model. For
example, if β1 = 0, then Y and x are not linearly related in the
population.

Statistical inference for β0 is less meaningful, unless one is explicitly
interested in the mean of Y when x = 0. We will not pursue this.
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Statistical inference for β0 and β1

Under the regression model assumptions, the following sampling
distribution arises:

t =
b1 − β1√

MSres
SSxx

∼ t(n − 2)

Confidence Interval: the 100(1− α) percent confidence interval

[b1 ± tn−2,α/2

√
MSres
SSxx

]

Hypothesis test: H0 : β1 = 0 v.s. H1 : β1 6= 0

p-value = P(|T | > |t|) = 2P(T > |t|)

If p-value< α, we reject H0; otherwise, do not reject H0
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Statistical inference for β0 and β1

Figure 2. Sewage data: t18 pdf, which is the sampling distribution of t when
H0 : β1 = 0 is true. The “×” represents t = 8.484.
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Statistical inference for β0 and β1

Confidence interval

> confint(fit,level=0.95)

2.5 % 97.5 %

(Intercept) 71.49309400 74.42399995

filtration.rate 0.03087207 0.05119547

Interpretation: We are 95% confident that the population parameter
β1 is between 0.0309 and 0.0511. Further, it means for every one
unit increase in the machine filtration rate x, we are 95%
confident that the population mean absorption E (Y ) will
increase between 0.0309 and 0.0511 percent.

Hypothesis test: use summary function in R to perform the
hypothesis test. Since p-value < 2× 10−16, reject H0. We have
sufficient evidence to conclude that β1 is not equal 0.
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Confidence and prediction intervals

We are often interested in learning about the response Y at a certain
setting of the independent variable, say x = x0. For the sewage data, for
example, suppose we are interested in the moisture percentage Y when
the filtration rate is x = 150 kg-DS/m/hr. Two potential goals arise:

Be interested in estimating the population mean of Y when
x = x0, that is E (Y |x0) = β0 + β1x0.

Be interested in predicting a new response Y at x = x0, that is
Y ∗(x0) = β0 + β1x0 + ε.

Goals: We would like to create 100(1− α) percent intervals for the
population mean E (Y |x0) and for the new response Y ∗(x0). The former is
called a confidence interval and the latter is called a prediction interval.
Point Estimator: the same for E (Y |x0) and Y ∗(x0), which is denoted by

Ŷ (x0) = b0 + b1x0
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Confidence and prediction intervals

Confidence Interval: A 100(1− α) percent confidence interval for the
population mean E (Y |x0) is given by

Ŷ (x0)± tn−2,α/2

√
MSres

[
1

n
+

(x0 − x̄)2

SSxx

]
Prediction Interval: A 100(1− α) percent confidence interval for the
population mean Y ∗(x0) is given by

Ŷ (x0)± tn−2,α/2

√
MSres

[
1 +

1

n
+

(x0 − x̄)2

SSxx

]
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Confidence and prediction intervals

Comparison: The two intervals have the same form and are nearly
identical.

– The extra “1” in the prediction interval’s standard error arises from the
additional uncertainty associated with ε.

– The prediction interval is always wider than the according confidence
interval, provided x0 and α are fixed.

Interval length: The length of both intervals depends on the value
of x0.

– The standard error in either interval will be smallest when x0 = x̄ and
will get larger the further x0 is from x̄ in either direction.

– This makes intuitive sense, namely, we would expect to have the most
“confidence” in the fitted model near the “center” of the observed
data.

Warning: Sometimes estimate E (Y |x0)/predict Ȳ ∗(x0) for values of
x0 outside the range of x values in the study. This is called
extrapolation and can be very dangerous.
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Confidence and prediction intervals
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Figure 3. Scatterplot of pellet moisture Y (measured as a percentage) as a
function of machine filtration rate x (measured in kg-DS/m/hr). The least
squares regression line is added. 95% confidence/prediction bands are added.
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Confidence and prediction intervals

A 95% confidence interval for E (Y |x0 = 150) is (78.79, 79.44). When
the filtration rate is x0 = 150 kg-DS/m/hr, we are 95% confident
that the population mean moisture percentage is between 78.79
and 79.44 percent.

A 95% prediction interval for Y ∗(x0 = 150) is (77.68, 80.55). When
the filtration rate is x0 = 150 kg-DS/m/hr, we are 95% confident
that the moisture percentage for a single specimen is between
78.79 and 79.44 percent.
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